|
|
|
|
"""
|
|
|
|
|
LLM Investment Advisor Service
|
|
|
|
|
|
|
|
|
|
提供投資策略的AI分析服務,包含:
|
|
|
|
|
- 投資建議生成
|
|
|
|
|
- 風險評估
|
|
|
|
|
- 市場洞察
|
|
|
|
|
- Prompt工程管理
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
import json
|
|
|
|
|
import time
|
|
|
|
|
import logging
|
|
|
|
|
import hashlib
|
|
|
|
|
from typing import Dict, Any, Optional, Tuple
|
|
|
|
|
|
|
|
|
|
from openai import OpenAI
|
|
|
|
|
try:
|
|
|
|
|
from config_openai import OPENAI_CONFIG, RATE_LIMITS
|
|
|
|
|
except Exception:
|
|
|
|
|
OPENAI_CONFIG = {
|
|
|
|
|
'api_key': os.environ.get('OPENAI_API_KEY') or os.environ.get('OPENROUTER_API_KEY', ''),
|
|
|
|
|
'model': os.environ.get('OPENAI_MODEL', os.environ.get('OPENROUTER_MODEL', 'gpt-4')),
|
|
|
|
|
'timeout': int(os.environ.get('LLM_TIMEOUT', '60')),
|
|
|
|
|
'max_tokens': int(os.environ.get('LLM_MAX_TOKENS', '2000')),
|
|
|
|
|
'temperature': float(os.environ.get('LLM_TEMPERATURE', '0.7'))
|
|
|
|
|
}
|
|
|
|
|
RATE_LIMITS = {
|
|
|
|
|
'max_retries': int(os.environ.get('LLM_MAX_RETRIES', '3')),
|
|
|
|
|
'retry_delay': int(os.environ.get('LLM_RETRY_DELAY', '2'))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# 設定日誌
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PromptManager:
|
|
|
|
|
"""管理不同的Prompt模板"""
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
self.system_prompt = self._get_system_prompt()
|
|
|
|
|
|
|
|
|
|
def _get_system_prompt(self) -> str:
|
|
|
|
|
"""系統提示詞 - 定義基金經理人專家角色"""
|
|
|
|
|
return """你是一位頂尖的基金經理人與投資策略師,擁有超過20年橫跨牛熊市的實戰經驗。你的專長是將複雜的金融數據轉化為清晰、易於理解的語言,為大眾投資者提供專業見解。
|
|
|
|
|
|
|
|
|
|
你的溝通風格:
|
|
|
|
|
- **權威且親切**:你的語氣充滿自信與專業,但同時讓非專業人士感到安心與信賴。
|
|
|
|
|
- **教育家精神**:你會用生動的比喻來解釋關鍵指標,例如將「夏普比率」比喻為投資的「性價比」,或將「最大回落」形容為「最顛簸的一段路」。
|
|
|
|
|
- **客觀中立**:你總是基於數據進行分析,同時點出潛在的盲點與風險。
|
|
|
|
|
|
|
|
|
|
你的任務是根據接下來提供的策略回測數據,撰寫一份專業的投資策略分析報告。"""
|
|
|
|
|
|
|
|
|
|
def build_strategy_context(self, strategy_data: Dict[str, Any]) -> str:
|
|
|
|
|
"""將策略資料轉換為結構化context,並附帶指標提示"""
|
|
|
|
|
return f"""
|
|
|
|
|
策略基本資訊:
|
|
|
|
|
- 策略編號:{strategy_data.get('id', 'N/A')}
|
|
|
|
|
- 策略名稱:{strategy_data.get('name', 'N/A')}
|
|
|
|
|
- 投資目標:{strategy_data.get('role', 'N/A')}
|
|
|
|
|
- 建立時間:{strategy_data.get('date', 'N/A')}
|
|
|
|
|
- 建立者:{strategy_data.get('username', 'N/A')}
|
|
|
|
|
|
|
|
|
|
核心績效指標:
|
|
|
|
|
- 年化報酬率:{strategy_data.get('annual_ret', 0):.2%} (衡量平均每年賺取多少利潤)
|
|
|
|
|
- 年化波動率:{strategy_data.get('vol', 0):.2%} (衡量資產價值的波動風險,越高代表起伏越大)
|
|
|
|
|
- 年化夏普比率:{strategy_data.get('annual_sr', 0):.2f} (衡量每一單位風險能換來多少報酬,可視為「投資CP值」)
|
|
|
|
|
- 最大回落(MDD):{strategy_data.get('mdd', 0):.2%} (衡量策略從最高點到最低點可能出現的最大虧損幅度)
|
|
|
|
|
|
|
|
|
|
進階參考指標:
|
|
|
|
|
- Alpha值:{strategy_data.get('alpha', 0):.4f} (相對於市場基準的超額報酬能力)
|
|
|
|
|
- Beta值:{strategy_data.get('beta', 0):.4f} (與市場波動的關聯性,大於1代表比市場更敏感)
|
|
|
|
|
- VaR (10天, 95%信心):{strategy_data.get('var10', 0):.2%} (預估在未來10天內,有95%的機率虧損不會超過此比例)
|
|
|
|
|
- R-squared:{strategy_data.get('r2', 0):.4f} (策略表現有多大比例可由市場表現來解釋)
|
|
|
|
|
|
|
|
|
|
投資組合配置:
|
|
|
|
|
- 包含資產:{', '.join(strategy_data.get('assets', []))}
|
|
|
|
|
- 市場類型:{'台灣市場' if strategy_data.get('tw', True) else '美國市場'}
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def get_investment_advice_prompt(self, strategy_data: Dict[str, Any]) -> str:
|
|
|
|
|
"""生成結構化投資建議報告的完整Prompt - 使用外部模板"""
|
|
|
|
|
try:
|
|
|
|
|
# 導入 prompts 模組
|
|
|
|
|
from prompts.investment_advice import get_comprehensive_analysis_prompt
|
|
|
|
|
return get_comprehensive_analysis_prompt(strategy_data)
|
|
|
|
|
except ImportError:
|
|
|
|
|
# 回退到內建模板
|
|
|
|
|
logger.warning("Could not import prompts.investment_advice, using built-in template")
|
|
|
|
|
return self._get_builtin_prompt(strategy_data)
|
|
|
|
|
|
|
|
|
|
def _get_builtin_prompt(self, strategy_data: Dict[str, Any]) -> str:
|
|
|
|
|
"""內建模板作為回退方案"""
|
|
|
|
|
context = self.build_strategy_context(strategy_data)
|
|
|
|
|
return f"""{self.system_prompt}
|
|
|
|
|
|
|
|
|
|
{context}
|
|
|
|
|
|
|
|
|
|
請嚴格遵循以下結構,為這份投資策略撰寫一份專業分析報告:
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
### **【投資策略總評:給您的執行摘要】**
|
|
|
|
|
*在這部分,請用2-3句話總結這個策略的核心特點與績效等級。直接點出它適合哪一種類型的投資者。*
|
|
|
|
|
|
|
|
|
|
### **【績效深度解析:白話解讀關鍵指標】**
|
|
|
|
|
*在這部分,請選擇2-3個最重要的指標(例如:夏普比率、最大回落),並用生動的比喻解釋它們在此策略中的意義。*
|
|
|
|
|
- **指標1**:[指標名稱] - [用比喻解釋其表現]
|
|
|
|
|
- **指標2**:[指標名稱] - [用比喻解釋其表現]
|
|
|
|
|
|
|
|
|
|
### **【策略的亮點與潛在風險】**
|
|
|
|
|
*客觀分析此策略的優缺點。*
|
|
|
|
|
- **👍 亮點 (Strengths)**:[至少列出2點,例如:在特定市場環境下表現優異、風險控制得當等]
|
|
|
|
|
- **🤔 潛在風險 (Weaknesses/Risks)**:[至少列出2點,例如:資產過於集中、對利率變化敏感等]
|
|
|
|
|
|
|
|
|
|
### **【給您的具體投資建議】**
|
|
|
|
|
*提供清晰、可執行的建議。*
|
|
|
|
|
1. **核心觀點**:[明確指出「繼續持有」、「考慮調整」或「尋找替代方案」]
|
|
|
|
|
2. **優化建議**:[提出1-2項具體優化方向,例如:「可考慮納入 OOO 類型的資產以分散風險」或「建議將再平衡頻率調整為 X 個月一次」]
|
|
|
|
|
3. **風險管理**:[提醒投資者應該注意的市場訊號或事件]
|
|
|
|
|
|
|
|
|
|
### **【未來展望與提醒】**
|
|
|
|
|
*提供一個前瞻性的總結,並附上免責聲明。*
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
請用繁體中文回答,確保報告結構完整、語氣專業且易於理解。"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LLMInvestmentAdvisor:
|
|
|
|
|
"""LLM投資顧問主類"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, api_key: Optional[str] = None):
|
|
|
|
|
"""初始化LLM服務"""
|
|
|
|
|
provider = os.environ.get('LLM_PROVIDER', 'openai').lower()
|
|
|
|
|
base_url = None
|
|
|
|
|
default_headers = None
|
|
|
|
|
|
|
|
|
|
if provider == 'openrouter':
|
|
|
|
|
self.api_key = api_key or os.environ.get('OPENROUTER_API_KEY') or OPENAI_CONFIG.get('api_key')
|
|
|
|
|
base_url = os.environ.get('OPENROUTER_BASE_URL', 'https://openrouter.ai/api/v1')
|
|
|
|
|
self.model = os.environ.get('OPENROUTER_MODEL', OPENAI_CONFIG.get('model', 'openrouter/auto'))
|
|
|
|
|
default_headers = {
|
|
|
|
|
'HTTP-Referer': os.environ.get('OPENROUTER_REFERER', ''),
|
|
|
|
|
'X-Title': os.environ.get('OPENROUTER_TITLE', 'TPM')
|
|
|
|
|
}
|
|
|
|
|
else:
|
|
|
|
|
self.api_key = api_key or os.environ.get('OPENAI_API_KEY') or OPENAI_CONFIG.get('api_key')
|
|
|
|
|
self.model = os.environ.get('OPENAI_MODEL', OPENAI_CONFIG.get('model', 'gpt-4'))
|
|
|
|
|
|
|
|
|
|
if not self.api_key or self.api_key == 'your-api-key-here':
|
|
|
|
|
raise ValueError("LLM API key is required. Please set OPENAI_API_KEY or OPENROUTER_API_KEY.")
|
|
|
|
|
|
|
|
|
|
self.client = OpenAI(
|
|
|
|
|
api_key=self.api_key,
|
|
|
|
|
base_url=base_url,
|
|
|
|
|
timeout=OPENAI_CONFIG.get('timeout', 30),
|
|
|
|
|
default_headers=default_headers
|
|
|
|
|
)
|
|
|
|
|
self.prompt_manager = PromptManager()
|
|
|
|
|
self.max_tokens = OPENAI_CONFIG.get('max_tokens', 2000)
|
|
|
|
|
self.temperature = OPENAI_CONFIG.get('temperature', 0.7)
|
|
|
|
|
|
|
|
|
|
# 快取設定
|
|
|
|
|
self.cache: Dict[str, Tuple[str, float]] = {}
|
|
|
|
|
self.cache_timeout = 3600 # 1小時快取
|
|
|
|
|
self.mock_mode = os.environ.get('MOCK_LLM', 'false').lower() in ('1', 'true', 'yes')
|
|
|
|
|
|
|
|
|
|
def _is_cache_valid(self, cache_time: float) -> bool:
|
|
|
|
|
"""檢查快取是否有效"""
|
|
|
|
|
return time.time() - cache_time < self.cache_timeout
|
|
|
|
|
|
|
|
|
|
def generate_advice(self, strategy_id: str, strategy_data: Dict[str, Any]) -> str:
|
|
|
|
|
"""生成投資建議
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
strategy_id: 策略ID
|
|
|
|
|
strategy_data: 策略資料字典
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
str: 投資建議文本
|
|
|
|
|
"""
|
|
|
|
|
stable_payload = json.dumps(strategy_data, sort_keys=True).encode('utf-8')
|
|
|
|
|
cache_digest = hashlib.sha256(stable_payload).hexdigest()
|
|
|
|
|
cache_key = f"advice_{strategy_id}_{cache_digest}"
|
|
|
|
|
|
|
|
|
|
# 檢查快取
|
|
|
|
|
if cache_key in self.cache:
|
|
|
|
|
advice, cache_time = self.cache[cache_key]
|
|
|
|
|
if self._is_cache_valid(cache_time):
|
|
|
|
|
logger.info(f"Returning cached advice for strategy {strategy_id}")
|
|
|
|
|
return advice
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# 構建prompt
|
|
|
|
|
prompt = self.prompt_manager.get_investment_advice_prompt(strategy_data)
|
|
|
|
|
|
|
|
|
|
# Mock 模式:不呼叫外部API
|
|
|
|
|
if self.mock_mode:
|
|
|
|
|
logger.info("MOCK_LLM enabled, returning fallback advice without external API call")
|
|
|
|
|
response = self._get_fallback_advice(strategy_data)
|
|
|
|
|
else:
|
|
|
|
|
# 調用LLM API
|
|
|
|
|
response = self._call_openai_with_retry(prompt)
|
|
|
|
|
|
|
|
|
|
# 快取結果
|
|
|
|
|
self.cache[cache_key] = (response, time.time())
|
|
|
|
|
logger.info(f"Generated new advice for strategy {strategy_id}")
|
|
|
|
|
return response
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Error generating advice for strategy {strategy_id}: {str(e)}")
|
|
|
|
|
return self._get_fallback_advice(strategy_data)
|
|
|
|
|
|
|
|
|
|
def clear_cache(self):
|
|
|
|
|
"""清除快取"""
|
|
|
|
|
self.cache.clear()
|
|
|
|
|
logger.info("LLM advice cache cleared")
|
|
|
|
|
|
|
|
|
|
def _call_openai_with_retry(self, prompt: str) -> str:
|
|
|
|
|
"""調用OpenAI API,包含重試機制
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt: 完整的prompt
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
str: API回應內容
|
|
|
|
|
"""
|
|
|
|
|
max_retries = RATE_LIMITS.get('max_retries', 3)
|
|
|
|
|
retry_delay = RATE_LIMITS.get('retry_delay', 2)
|
|
|
|
|
|
|
|
|
|
for attempt in range(max_retries):
|
|
|
|
|
try:
|
|
|
|
|
response = self.client.chat.completions.create(
|
|
|
|
|
model=self.model,
|
|
|
|
|
messages=[
|
|
|
|
|
{"role": "system", "content": "你是一位專業的投資顧問。"},
|
|
|
|
|
{"role": "user", "content": prompt}
|
|
|
|
|
],
|
|
|
|
|
max_tokens=self.max_tokens,
|
|
|
|
|
temperature=self.temperature,
|
|
|
|
|
top_p=0.9
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return response.choices[0].message.content.strip()
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
status_code = getattr(e, 'status_code', None)
|
|
|
|
|
is_rate_limited = status_code == 429 or 'rate limit' in str(e).lower()
|
|
|
|
|
if attempt < max_retries - 1 and (is_rate_limited or True):
|
|
|
|
|
wait_time = retry_delay ** attempt
|
|
|
|
|
logger.warning(f"LLM API error, retrying in {wait_time}s... (attempt {attempt + 1}/{max_retries}): {str(e)}")
|
|
|
|
|
time.sleep(wait_time)
|
|
|
|
|
continue
|
|
|
|
|
logger.error(f"LLM API error after {max_retries} attempts: {str(e)}")
|
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
def _get_fallback_advice(self, strategy_data: Dict[str, Any]) -> str:
|
|
|
|
|
"""獲取fallback投資建議"""
|
|
|
|
|
annual_ret = strategy_data.get('annual_ret', 0)
|
|
|
|
|
vol = strategy_data.get('vol', 0)
|
|
|
|
|
sharpe = strategy_data.get('annual_sr', 0)
|
|
|
|
|
|
|
|
|
|
return f"""
|
|
|
|
|
基於您的投資策略數據,我提供以下初步分析:
|
|
|
|
|
|
|
|
|
|
📊 **表現評估**:
|
|
|
|
|
- 年化報酬率:{annual_ret:.2%} - {'表現良好' if annual_ret > 0.1 else '有改進空間'}
|
|
|
|
|
- 年化波動率:{vol:.2%} - {'風險適中' if vol < 0.2 else '風險較高'}
|
|
|
|
|
- 夏普比率:{sharpe:.2f} - {'風險調整後報酬優良' if sharpe > 1 else '有改進空間'}
|
|
|
|
|
|
|
|
|
|
💡 **初步建議**:
|
|
|
|
|
1. 持續監控市場變化
|
|
|
|
|
2. 定期檢視投資組合配置
|
|
|
|
|
3. 考慮分散投資降低風險
|
|
|
|
|
|
|
|
|
|
*注意:此為預設建議,如需詳細分析請稍後再試。*
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Duplicate clear_cache removed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 創建全域實例
|
|
|
|
|
llm_advisor = None
|
|
|
|
|
|
|
|
|
|
def get_llm_advisor() -> LLMInvestmentAdvisor:
|
|
|
|
|
"""獲取LLM顧問實例"""
|
|
|
|
|
global llm_advisor
|
|
|
|
|
if llm_advisor is None:
|
|
|
|
|
llm_advisor = LLMInvestmentAdvisor()
|
|
|
|
|
return llm_advisor
|