forked from lab/TPM
- Add investment_advice_v2.py (educational content) - Add market_benchmark.py (0050.TW/SPY real-time data) - Update main.py (CoT parameter support) - Update llm_service.py (V2 integration) - Update result_view.html (CoT toggle, marked.js) - Add render.yaml (deployment config) - Update .gitignore (protect .env, node_modules, logs)data-init-fixes
parent
1c16cb4321
commit
cbd580bb12
17 changed files with 1284 additions and 108 deletions
@ -0,0 +1,259 @@ |
||||
""" |
||||
市場基準資料模組 |
||||
|
||||
從資料庫取得實際的市場基準資料(台股加權指數、S&P 500) |
||||
用於 Context Engineering 的市場環境背景 |
||||
""" |
||||
|
||||
import psycopg2 |
||||
import pandas as pd |
||||
import numpy as np |
||||
from datetime import datetime, timedelta |
||||
from typing import Dict, Any, Optional |
||||
import logging |
||||
|
||||
logger = logging.getLogger(__name__) |
||||
|
||||
# 從 config 匯入資料庫設定 |
||||
try: |
||||
from config import SQL_CONFIG |
||||
except ImportError: |
||||
# Fallback 設定 |
||||
SQL_CONFIG = { |
||||
"database": "portfolio_platform", |
||||
"user": "postgres", |
||||
"host": "db", |
||||
"port": "5432", |
||||
"password": "thiispassword1qaz!QAZ" |
||||
} |
||||
|
||||
|
||||
class MarketBenchmark: |
||||
"""市場基準資料類別""" |
||||
|
||||
def __init__(self): |
||||
"""初始化市場基準資料""" |
||||
self.cache = {} |
||||
self.cache_timeout = 3600 # 1小時快取 |
||||
self.cache_time = {} |
||||
|
||||
def _is_cache_valid(self, key: str) -> bool: |
||||
"""檢查快取是否有效""" |
||||
if key not in self.cache_time: |
||||
return False |
||||
return (datetime.now().timestamp() - self.cache_time[key]) < self.cache_timeout |
||||
|
||||
def get_market_context(self, tw: bool = True, force_refresh: bool = False) -> Dict[str, Any]: |
||||
""" |
||||
獲取市場環境背景(從資料庫計算實際數據) |
||||
|
||||
Args: |
||||
tw: True=台灣市場,False=美國市場 |
||||
force_refresh: 強制重新計算(不使用快取) |
||||
|
||||
Returns: |
||||
市場環境背景字典 |
||||
""" |
||||
cache_key = f"market_{'tw' if tw else 'us'}" |
||||
|
||||
# 檢查快取 |
||||
if not force_refresh and self._is_cache_valid(cache_key): |
||||
logger.info(f"Using cached market context for {'TW' if tw else 'US'}") |
||||
return self.cache[cache_key] |
||||
|
||||
try: |
||||
if tw: |
||||
context = self._get_tw_market_context() |
||||
else: |
||||
context = self._get_us_market_context() |
||||
|
||||
# 更新快取 |
||||
self.cache[cache_key] = context |
||||
self.cache_time[cache_key] = datetime.now().timestamp() |
||||
|
||||
logger.info(f"Calculated market context for {'TW' if tw else 'US'}: {context}") |
||||
return context |
||||
|
||||
except Exception as e: |
||||
logger.error(f"Error getting market context: {e}") |
||||
# Fallback 到靜態資料 |
||||
return self._get_fallback_context(tw) |
||||
|
||||
def _get_tw_market_context(self) -> Dict[str, Any]: |
||||
"""取得台灣市場基準資料(從資料庫計算)""" |
||||
conn = psycopg2.connect(**SQL_CONFIG) |
||||
|
||||
try: |
||||
# 取得 0050.TW 近期資料 |
||||
query = """ |
||||
SELECT date, price |
||||
FROM stock_price_tw |
||||
WHERE ticker = '0050.TW' |
||||
ORDER BY date DESC |
||||
LIMIT 1260 -- 約5年交易日 |
||||
""" |
||||
|
||||
df = pd.read_sql(query, conn) |
||||
df = df.sort_values('date') |
||||
df['return'] = df['price'].pct_change() |
||||
|
||||
# 計算各項指標 |
||||
latest_price = df['price'].iloc[-1] |
||||
year_start_idx = max(0, len(df) - 252) # 今年開始(約252交易日) |
||||
ytd_return = (latest_price / df['price'].iloc[year_start_idx]) - 1 |
||||
|
||||
# 近5年年化報酬 |
||||
total_return = (latest_price / df['price'].iloc[0]) - 1 |
||||
years = len(df) / 252 |
||||
avg_5y_return = (1 + total_return) ** (1 / years) - 1 |
||||
|
||||
# 年化波動率 |
||||
volatility = df['return'].std() * np.sqrt(252) |
||||
|
||||
# 市場情緒判斷(基於近期趨勢) |
||||
recent_returns = df['return'].iloc[-63:].sum() # 最近3個月 |
||||
if recent_returns > 0.05: |
||||
sentiment = "bull" |
||||
elif recent_returns < -0.05: |
||||
sentiment = "bear" |
||||
else: |
||||
sentiment = "neutral" |
||||
|
||||
return { |
||||
"market_name": "台灣加權指數(0050.TW)", |
||||
"ytd_return": float(ytd_return), |
||||
"avg_5y_return": float(avg_5y_return), |
||||
"current_price": float(latest_price), |
||||
"volatility": float(volatility), |
||||
"sentiment": sentiment, |
||||
"last_update": df['date'].iloc[-1].strftime("%Y-%m-%d"), |
||||
"data_points": len(df) |
||||
} |
||||
|
||||
finally: |
||||
conn.close() |
||||
|
||||
def _get_us_market_context(self) -> Dict[str, Any]: |
||||
"""取得美國市場基準資料(從資料庫計算)""" |
||||
conn = psycopg2.connect(**SQL_CONFIG) |
||||
|
||||
try: |
||||
# 取得 SPY 近期資料 |
||||
query = """ |
||||
SELECT date, price |
||||
FROM stock_price |
||||
WHERE ticker = 'SPY' |
||||
ORDER BY date DESC |
||||
LIMIT 1260 -- 約5年交易日 |
||||
""" |
||||
|
||||
df = pd.read_sql(query, conn) |
||||
df = df.sort_values('date') |
||||
df['return'] = df['price'].pct_change() |
||||
|
||||
# 計算各項指標 |
||||
latest_price = df['price'].iloc[-1] |
||||
year_start_idx = max(0, len(df) - 252) |
||||
ytd_return = (latest_price / df['price'].iloc[year_start_idx]) - 1 |
||||
|
||||
# 近5年年化報酬 |
||||
total_return = (latest_price / df['price'].iloc[0]) - 1 |
||||
years = len(df) / 252 |
||||
avg_5y_return = (1 + total_return) ** (1 / years) - 1 |
||||
|
||||
# 年化波動率 |
||||
volatility = df['return'].std() * np.sqrt(252) |
||||
|
||||
# 市場情緒判斷 |
||||
recent_returns = df['return'].iloc[-63:].sum() |
||||
if recent_returns > 0.05: |
||||
sentiment = "bull" |
||||
elif recent_returns < -0.05: |
||||
sentiment = "bear" |
||||
else: |
||||
sentiment = "neutral" |
||||
|
||||
return { |
||||
"market_name": "S&P 500(SPY)", |
||||
"ytd_return": float(ytd_return), |
||||
"avg_5y_return": float(avg_5y_return), |
||||
"current_price": float(latest_price), |
||||
"volatility": float(volatility), |
||||
"sentiment": sentiment, |
||||
"last_update": df['date'].iloc[-1].strftime("%Y-%m-%d"), |
||||
"data_points": len(df) |
||||
} |
||||
|
||||
finally: |
||||
conn.close() |
||||
|
||||
def _get_fallback_context(self, tw: bool) -> Dict[str, Any]: |
||||
"""Fallback 靜態資料(資料庫查詢失敗時使用)""" |
||||
if tw: |
||||
return { |
||||
"market_name": "台灣加權指數", |
||||
"ytd_return": 0.18, |
||||
"avg_5y_return": 0.09, |
||||
"volatility": 0.15, |
||||
"sentiment": "neutral", |
||||
"last_update": "static", |
||||
"is_fallback": True |
||||
} |
||||
else: |
||||
return { |
||||
"market_name": "S&P 500", |
||||
"ytd_return": 0.22, |
||||
"avg_5y_return": 0.12, |
||||
"volatility": 0.14, |
||||
"sentiment": "bull", |
||||
"last_update": "static", |
||||
"is_fallback": True |
||||
} |
||||
|
||||
|
||||
# 單例模式 |
||||
_market_benchmark_instance = None |
||||
|
||||
def get_market_benchmark() -> MarketBenchmark: |
||||
"""獲取市場基準實例(單例)""" |
||||
global _market_benchmark_instance |
||||
if _market_benchmark_instance is None: |
||||
_market_benchmark_instance = MarketBenchmark() |
||||
return _market_benchmark_instance |
||||
|
||||
|
||||
# 便利函數(向後兼容) |
||||
def get_market_context(tw: bool = True) -> Dict[str, Any]: |
||||
""" |
||||
獲取市場環境背景 |
||||
|
||||
此函數與 prompts/investment_advice_v2.py 中的函數簽名相同 |
||||
可直接替換使用 |
||||
""" |
||||
benchmark = get_market_benchmark() |
||||
return benchmark.get_market_context(tw) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
# 測試腳本 |
||||
import json |
||||
|
||||
logging.basicConfig(level=logging.INFO) |
||||
|
||||
print("="*80) |
||||
print("測試市場基準資料模組") |
||||
print("="*80) |
||||
|
||||
# 測試台灣市場 |
||||
print("\n台灣市場基準:") |
||||
tw_context = get_market_context(tw=True) |
||||
print(json.dumps(tw_context, indent=2, ensure_ascii=False)) |
||||
|
||||
# 測試美國市場 |
||||
print("\n美國市場基準:") |
||||
us_context = get_market_context(tw=False) |
||||
print(json.dumps(us_context, indent=2, ensure_ascii=False)) |
||||
|
||||
print("\n" + "="*80) |
||||
print("測試完成!") |
||||
print("="*80) |
||||
@ -0,0 +1,46 @@ |
||||
services: |
||||
# Flask Web Service |
||||
- type: web |
||||
name: tpm-flask |
||||
env: docker |
||||
dockerfilePath: ./Dockerfile |
||||
plan: free |
||||
healthCheckPath: / |
||||
envVars: |
||||
- key: DATABASE_URL |
||||
fromDatabase: |
||||
name: tpm-db |
||||
property: connectionString |
||||
- key: REDIS_URL |
||||
fromService: |
||||
name: tpm-redis |
||||
type: redis |
||||
property: connectionString |
||||
- key: OPENROUTER_API_KEY |
||||
sync: false |
||||
- key: OPENROUTER_MODEL |
||||
value: google/gemini-2.0-flash-exp:free |
||||
- key: MOCK_LLM |
||||
value: false |
||||
- key: LLM_TIMEOUT |
||||
value: 60 |
||||
- key: LLM_MAX_TOKENS |
||||
value: 1500 |
||||
- key: LLM_TEMPERATURE |
||||
value: 0.6 |
||||
|
||||
# PostgreSQL Database |
||||
- type: pserv |
||||
name: tpm-db |
||||
env: docker |
||||
plan: free |
||||
disk: |
||||
name: postgres-data |
||||
mountPath: /var/lib/postgresql/data |
||||
sizeGB: 1 |
||||
|
||||
# Redis Cache |
||||
- type: redis |
||||
name: tpm-redis |
||||
plan: free |
||||
maxmemoryPolicy: allkeys-lru |
||||
Loading…
Reference in new issue