You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Eric0801
cbd580bb12
feat: V2 prompt system with benchmarks and CoT for Demo Day
- Add investment_advice_v2.py (educational content)
- Add market_benchmark.py (0050.TW/SPY real-time data)
- Update main.py (CoT parameter support)
- Update llm_service.py (V2 integration)
- Update result_view.html (CoT toggle, marked.js)
- Add render.yaml (deployment config)
- Update .gitignore (protect .env, node_modules, logs)
|
1 month ago |
|
data_init
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
prompts
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
sql_script
|
set db postgresql version as 15
|
1 year ago |
|
static
|
change only backtesting>=1
|
2 years ago |
|
templates
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
.gitignore
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
Dockerfile
|
add new assets list and add competitions
|
2 years ago |
|
LLM_DEMO.py
|
Fix unhashable type error in prompt templates\n\n- Fixed syntax error in prompts/investment_advice.py: {{}} -> {}\n- Cleaned up duplicate imports in llm_service.py\n- Removed unused lru_cache import\n- All prompt templates now work correctly\n- Demo script runs successfully
|
2 months ago |
|
LLM_SETUP.md
|
Add LLM investment advice feature with OpenAI integration\n\n- Created llm_service.py with comprehensive LLM advisor\n- Added config_openai.py for API configuration\n- Created prompts/investment_advice.py with prompt templates\n- Updated requirements.txt with OpenAI dependency\n- Modified main.py with /api/llm_advice endpoint\n- Enhanced result_view.html with LLM advice section\n- Added CSS styling for better UI\n- Created LLM_SETUP.md setup guide\n- Added test_llm_service.py for testing\n- Implemented caching, retry logic, and error handling\n- Features: strategy analysis, risk assessment, market insights
|
2 months ago |
|
Procfile
|
init
|
2 years ago |
|
README.md
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
assets_tw.json
|
20230721 Finished auto deploy
|
2 years ago |
|
assets_us.json
|
update new password setting
|
1 year ago |
|
config.py
|
update new password setting
|
1 year ago |
|
config_openai.py
|
Add LLM investment advice feature with OpenAI integration\n\n- Created llm_service.py with comprehensive LLM advisor\n- Added config_openai.py for API configuration\n- Created prompts/investment_advice.py with prompt templates\n- Updated requirements.txt with OpenAI dependency\n- Modified main.py with /api/llm_advice endpoint\n- Enhanced result_view.html with LLM advice section\n- Added CSS styling for better UI\n- Created LLM_SETUP.md setup guide\n- Added test_llm_service.py for testing\n- Implemented caching, retry logic, and error handling\n- Features: strategy analysis, risk assessment, market insights
|
2 months ago |
|
cursor.md
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
docker-compose.yml
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
llm_service.py
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
main.py
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
market_benchmark.py
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
portfolio_builder.py
|
change only backtesting>=1
|
2 years ago |
|
render.yaml
|
feat: V2 prompt system with benchmarks and CoT for Demo Day
|
1 month ago |
|
requirements.txt
|
Add LLM investment advice feature with OpenAI integration\n\n- Created llm_service.py with comprehensive LLM advisor\n- Added config_openai.py for API configuration\n- Created prompts/investment_advice.py with prompt templates\n- Updated requirements.txt with OpenAI dependency\n- Modified main.py with /api/llm_advice endpoint\n- Enhanced result_view.html with LLM advice section\n- Added CSS styling for better UI\n- Created LLM_SETUP.md setup guide\n- Added test_llm_service.py for testing\n- Implemented caching, retry logic, and error handling\n- Features: strategy analysis, risk assessment, market insights
|
2 months ago |
|
sql_command.py
|
init
|
2 years ago |
|
test_llm_service.py
|
Fix syntax error in test script\n\n- Corrected missing parenthesis in test_llm_service.py\n- All tests now pass successfully
|
2 months ago |
|
update_assets_us.py
|
add new assets list and add competitions
|
2 years ago |
TPM – 投資組合大擂台
1) 內容概要
- Flask + PostgreSQL + Redis 的投資策略平台,內含回測、圖表與 LLM 投資建議。
- 前端採 Jinja SSR + Bootstrap;LLM 透過
llm_service.py 封裝,可切換 OpenAI/OpenRouter/Mock。
2) 技術棧(現況,請勿任意更換)
- Backend: Flask 2.2, psycopg2, Flask-Caching, Plotly
- DB/Cache: PostgreSQL, Redis
- Frontend: Jinja, Bootstrap 5, Bootstrap Icons(避免新增其他 CSS 框架)
- LLM: OpenAI SDK(可接 OpenRouter),支援 Mock
- Container: Docker, docker-compose
3) 目錄重點
main.py: 路由與頁面組裝;禁止塞商業邏輯
llm_service.py: LLM 供應商、Prompt、重試、快取
portfolio_builder.py: 投組演算法
templates/: Jinja 模板(僅結構與少量初始化)
static/js/{components,pages}/: 前端 JS 組件與頁面邏輯
sql_script/: DB 初始化
data_init/: 資料初始化與更新腳本
4) 快速開始
- 準備
.env(置於專案根目錄)
LLM_PROVIDER=openrouter
OPENROUTER_API_KEY=your_key
OPENROUTER_MODEL=google/gemini-2.0-flash-exp:free
LLM_TIMEOUT=60
LLM_MAX_TOKENS=1500
LLM_TEMPERATURE=0.6
MOCK_LLM=false
- 啟動容器
docker compose up -d --build --force-recreate
- 服務連線
5) 開發規範(避免技術債)
- 不動既有架構、Docker 設定與不相關功能。
- 僅在確定「已使用」時才把套件寫入
requirements.txt;未用到的要移除。
- 完成一個環節、測試通過才 commit;不要在同一個 commit 混雜多項變更。
- 前端:避免大型 inline JS;新邏輯放
static/js/pages/*.js 或 static/js/components/*.js。
- 後端:商業邏輯放在服務檔案(如
llm_service.py),main.py 保持輕薄。
- LLM:僅經
get_llm_advisor().generate_advice(strategy_id, strategy_dict);參數由 .env 控制。
6) 測試
- 後端:可使用離線腳本(
MOCK_LLM=true)進行測試。
- 任何變更建議附最小可重現測試或腳本(避免手動點擊測試)。
7) 常見問題
- 500 + LLM 失敗:確認
.env 已注入容器;離線測試可先設 MOCK_LLM=true
- DB 連線錯誤:程式內部連線 host 應為
db
- KeyError(TSLA/AAPL):確認
data_init 成功寫入對應市場資料
8) Git / PR 規範
- 分支命名:
feature/<area>-<short>、fix/<area>-<short>
- PR 標題:
[TPM] <Title>;內容包含「動機 / 變更 / 風險 / 測試方式」
- 小步提交、保持向後相容;前端改動請將 JS 抽出至
static/js/
9) 設計原則
- 關注點分離:路由薄、服務厚;模板薄、JS 組件化
- 僅在既有層擴展功能;避免跨層耦合
- 可回退:大改以 feature flag 包裝,保持 simple 模式可用
更詳細的協作規範請見 cursor.md。