投資組合大擂台 Ver. 2
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

259 lines
8.1 KiB

"""
市場基準資料模組
從資料庫取得實際的市場基準資料(台股加權指數、S&P 500)
用於 Context Engineering 的市場環境背景
"""
import psycopg2
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, Any, Optional
import logging
logger = logging.getLogger(__name__)
# 從 config 匯入資料庫設定
try:
from config import SQL_CONFIG
except ImportError:
# Fallback 設定
SQL_CONFIG = {
"database": "portfolio_platform",
"user": "postgres",
"host": "db",
"port": "5432",
"password": "thiispassword1qaz!QAZ"
}
class MarketBenchmark:
"""市場基準資料類別"""
def __init__(self):
"""初始化市場基準資料"""
self.cache = {}
self.cache_timeout = 3600 # 1小時快取
self.cache_time = {}
def _is_cache_valid(self, key: str) -> bool:
"""檢查快取是否有效"""
if key not in self.cache_time:
return False
return (datetime.now().timestamp() - self.cache_time[key]) < self.cache_timeout
def get_market_context(self, tw: bool = True, force_refresh: bool = False) -> Dict[str, Any]:
"""
獲取市場環境背景(從資料庫計算實際數據)
Args:
tw: True=台灣市場,False=美國市場
force_refresh: 強制重新計算(不使用快取)
Returns:
市場環境背景字典
"""
cache_key = f"market_{'tw' if tw else 'us'}"
# 檢查快取
if not force_refresh and self._is_cache_valid(cache_key):
logger.info(f"Using cached market context for {'TW' if tw else 'US'}")
return self.cache[cache_key]
try:
if tw:
context = self._get_tw_market_context()
else:
context = self._get_us_market_context()
# 更新快取
self.cache[cache_key] = context
self.cache_time[cache_key] = datetime.now().timestamp()
logger.info(f"Calculated market context for {'TW' if tw else 'US'}: {context}")
return context
except Exception as e:
logger.error(f"Error getting market context: {e}")
# Fallback 到靜態資料
return self._get_fallback_context(tw)
def _get_tw_market_context(self) -> Dict[str, Any]:
"""取得台灣市場基準資料(從資料庫計算)"""
conn = psycopg2.connect(**SQL_CONFIG)
try:
# 取得 0050.TW 近期資料
query = """
SELECT date, price
FROM stock_price_tw
WHERE ticker = '0050.TW'
ORDER BY date DESC
LIMIT 1260 -- 約5年交易日
"""
df = pd.read_sql(query, conn)
df = df.sort_values('date')
df['return'] = df['price'].pct_change()
# 計算各項指標
latest_price = df['price'].iloc[-1]
year_start_idx = max(0, len(df) - 252) # 今年開始(約252交易日)
ytd_return = (latest_price / df['price'].iloc[year_start_idx]) - 1
# 近5年年化報酬
total_return = (latest_price / df['price'].iloc[0]) - 1
years = len(df) / 252
avg_5y_return = (1 + total_return) ** (1 / years) - 1
# 年化波動率
volatility = df['return'].std() * np.sqrt(252)
# 市場情緒判斷(基於近期趨勢)
recent_returns = df['return'].iloc[-63:].sum() # 最近3個月
if recent_returns > 0.05:
sentiment = "bull"
elif recent_returns < -0.05:
sentiment = "bear"
else:
sentiment = "neutral"
return {
"market_name": "台灣加權指數(0050.TW)",
"ytd_return": float(ytd_return),
"avg_5y_return": float(avg_5y_return),
"current_price": float(latest_price),
"volatility": float(volatility),
"sentiment": sentiment,
"last_update": df['date'].iloc[-1].strftime("%Y-%m-%d"),
"data_points": len(df)
}
finally:
conn.close()
def _get_us_market_context(self) -> Dict[str, Any]:
"""取得美國市場基準資料(從資料庫計算)"""
conn = psycopg2.connect(**SQL_CONFIG)
try:
# 取得 SPY 近期資料
query = """
SELECT date, price
FROM stock_price
WHERE ticker = 'SPY'
ORDER BY date DESC
LIMIT 1260 -- 約5年交易日
"""
df = pd.read_sql(query, conn)
df = df.sort_values('date')
df['return'] = df['price'].pct_change()
# 計算各項指標
latest_price = df['price'].iloc[-1]
year_start_idx = max(0, len(df) - 252)
ytd_return = (latest_price / df['price'].iloc[year_start_idx]) - 1
# 近5年年化報酬
total_return = (latest_price / df['price'].iloc[0]) - 1
years = len(df) / 252
avg_5y_return = (1 + total_return) ** (1 / years) - 1
# 年化波動率
volatility = df['return'].std() * np.sqrt(252)
# 市場情緒判斷
recent_returns = df['return'].iloc[-63:].sum()
if recent_returns > 0.05:
sentiment = "bull"
elif recent_returns < -0.05:
sentiment = "bear"
else:
sentiment = "neutral"
return {
"market_name": "S&P 500(SPY)",
"ytd_return": float(ytd_return),
"avg_5y_return": float(avg_5y_return),
"current_price": float(latest_price),
"volatility": float(volatility),
"sentiment": sentiment,
"last_update": df['date'].iloc[-1].strftime("%Y-%m-%d"),
"data_points": len(df)
}
finally:
conn.close()
def _get_fallback_context(self, tw: bool) -> Dict[str, Any]:
"""Fallback 靜態資料(資料庫查詢失敗時使用)"""
if tw:
return {
"market_name": "台灣加權指數",
"ytd_return": 0.18,
"avg_5y_return": 0.09,
"volatility": 0.15,
"sentiment": "neutral",
"last_update": "static",
"is_fallback": True
}
else:
return {
"market_name": "S&P 500",
"ytd_return": 0.22,
"avg_5y_return": 0.12,
"volatility": 0.14,
"sentiment": "bull",
"last_update": "static",
"is_fallback": True
}
# 單例模式
_market_benchmark_instance = None
def get_market_benchmark() -> MarketBenchmark:
"""獲取市場基準實例(單例)"""
global _market_benchmark_instance
if _market_benchmark_instance is None:
_market_benchmark_instance = MarketBenchmark()
return _market_benchmark_instance
# 便利函數(向後兼容)
def get_market_context(tw: bool = True) -> Dict[str, Any]:
"""
獲取市場環境背景
此函數與 prompts/investment_advice_v2.py 中的函數簽名相同
可直接替換使用
"""
benchmark = get_market_benchmark()
return benchmark.get_market_context(tw)
if __name__ == "__main__":
# 測試腳本
import json
logging.basicConfig(level=logging.INFO)
print("="*80)
print("測試市場基準資料模組")
print("="*80)
# 測試台灣市場
print("\n台灣市場基準:")
tw_context = get_market_context(tw=True)
print(json.dumps(tw_context, indent=2, ensure_ascii=False))
# 測試美國市場
print("\n美國市場基準:")
us_context = get_market_context(tw=False)
print(json.dumps(us_context, indent=2, ensure_ascii=False))
print("\n" + "="*80)
print("測試完成!")
print("="*80)