|
|
|
import json
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from scipy.optimize import minimize
|
|
|
|
|
|
|
|
class MVO(object):
|
|
|
|
@staticmethod
|
|
|
|
def portfolio_info(w, ret, market_ret, rf=0):
|
|
|
|
# return and drawdown
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
cum_ret = (retPort+1).cumprod()
|
|
|
|
rolling_max=np.maximum.accumulate(cum_ret)
|
|
|
|
mdd = np.max((rolling_max - cum_ret)/rolling_max)
|
|
|
|
|
|
|
|
## Sharpe Ratio
|
|
|
|
stdPort = np.std(retPort)
|
|
|
|
vol = stdPort*15.87451
|
|
|
|
annual_ret = np.mean(retPort) * 252
|
|
|
|
annual_sr = (annual_ret-rf) / vol
|
|
|
|
|
|
|
|
## alpha, beta
|
|
|
|
cov = np.cov(retPort, market_ret)
|
|
|
|
beta = cov[0, 1] / cov[1, 1]
|
|
|
|
alpha = annual_ret - rf - beta*(np.mean(market_ret) * 252 - rf)
|
|
|
|
R2 = cov[0, 1]**2/(cov[0, 0] * cov[1, 1])
|
|
|
|
|
|
|
|
## n-day 95% VaR
|
|
|
|
var10 = -annual_ret*(10/252) + 1.645*vol*(10/252)**(1/2)
|
|
|
|
d = dict(annual_ret = annual_ret,
|
|
|
|
vol=vol,
|
|
|
|
mdd=mdd,
|
|
|
|
annual_sr=annual_sr,
|
|
|
|
beta=beta,
|
|
|
|
alpha=alpha,
|
|
|
|
var10=var10,
|
|
|
|
R2=R2)
|
|
|
|
return {key: round(d[key], 2) for key in d}
|
|
|
|
@staticmethod
|
|
|
|
def sharpe_ratio(w, ret):
|
|
|
|
cov = np.cov(ret.T)
|
|
|
|
# print(cov.shape, w.shape)
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
stdPort = np.std(retPort)
|
|
|
|
return np.mean(retPort)/stdPort
|
|
|
|
@staticmethod
|
|
|
|
def sharpe_grad(w, ret, cov):
|
|
|
|
manual_ret = np.mean(ret, axis=0)
|
|
|
|
# print(cov.shape, w.shape)
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
stdPort = np.std(retPort)
|
|
|
|
g1=manual_ret/stdPort
|
|
|
|
g2=np.mean(retPort)*stdPort**(-3)*cov@w
|
|
|
|
return g1-g2
|
|
|
|
@staticmethod
|
|
|
|
def sortino_ratio(w, ret):
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
stdPort = np.std(np.maximum(-retPort, 0))
|
|
|
|
return np.mean(retPort)/stdPort
|
|
|
|
@staticmethod
|
|
|
|
def sortino_grad(w, ret, cov_sor):
|
|
|
|
manual_ret = np.mean(ret, axis=0)
|
|
|
|
# print(cov.shape, w.shape)
|
|
|
|
retPort = ret@w # T-dimensional arrayss
|
|
|
|
stdPort = np.std(retPort)
|
|
|
|
g1=manual_ret/stdPort
|
|
|
|
g2=np.mean(retPort)*stdPort**(-3)*cov_sor@w
|
|
|
|
return g1-g2
|
|
|
|
@staticmethod
|
|
|
|
def sortino_ratio(w, ret):
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
stdPort = np.std(np.maximum(-retPort, 0))
|
|
|
|
return np.mean(retPort)/stdPort
|
|
|
|
@staticmethod
|
|
|
|
def sortino_grad(w, ret, cov_sor):
|
|
|
|
manual_ret = np.mean(ret, axis=0)
|
|
|
|
# print(cov.shape, w.shape)
|
|
|
|
retPort = ret@w # T-dimensional arrayss
|
|
|
|
stdPort = np.std(retPort)
|
|
|
|
g1=manual_ret/stdPort
|
|
|
|
g2=np.mean(retPort)*stdPort**(-3)*cov_sor@w
|
|
|
|
return g1-g2
|
|
|
|
# equivalent opt problem with min vol
|
|
|
|
@staticmethod
|
|
|
|
def volatility(w, ret):
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
return np.std(retPort)
|
|
|
|
@staticmethod
|
|
|
|
def volatility_grad(w, ret, cov):
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
stdPort = np.std(retPort)
|
|
|
|
return cov@w/stdPort
|
|
|
|
@staticmethod
|
|
|
|
def quadratic_utility(w, ret, gamma):
|
|
|
|
retPort = ret@w # T-dimensional array
|
|
|
|
varPort = np.var(retPort)
|
|
|
|
return np.mean(retPort) - 0.5*gamma*varPort
|
|
|
|
@staticmethod
|
|
|
|
def quadratic_utility_grad(w, ret, cov, gamma):
|
|
|
|
manual_ret = np.mean(ret, axis=0)
|
|
|
|
return manual_ret - gamma*cov@w
|
|
|
|
@classmethod
|
|
|
|
def opt(cls, ret, gamma=0, role="max_sharpe"):
|
|
|
|
n = ret.shape[1]
|
|
|
|
init=np.ones(n)/n
|
|
|
|
if role=="max_sharpe":
|
|
|
|
cov=np.cov(ret.T)
|
|
|
|
loss = lambda w: -cls.sharpe_ratio(w, ret)
|
|
|
|
grad = lambda w: -cls.sharpe_grad(w, ret, cov)
|
|
|
|
elif role=="max_sortino":
|
|
|
|
cov = np.cov(np.maximum(ret, 0).T)
|
|
|
|
loss = lambda w: -cls.sortino_ratio(w, ret)
|
|
|
|
grad = lambda w: -cls.sortino_grad(w, ret, cov)
|
|
|
|
elif role=="min_volatility":
|
|
|
|
cov=np.cov(ret.T)
|
|
|
|
loss = lambda w: cls.volatility(w, ret)
|
|
|
|
grad = lambda w: cls.volatility_grad(w, ret, cov)
|
|
|
|
elif role=="quadratic_utility":
|
|
|
|
cov=np.cov(ret.T)
|
|
|
|
loss = lambda w: -cls.quadratic_utility(w, ret, gamma)
|
|
|
|
grad = lambda w: -cls.quadratic_utility_grad(w, ret, cov, gamma)
|
|
|
|
else:
|
|
|
|
return init
|
|
|
|
bnds = [[0, 0.6] for i in range(n)]
|
|
|
|
opts = {'maxiter': 1000, 'disp': False}
|
|
|
|
cons = ({'type': 'eq', 'fun': lambda w: np.sum(w) - 1})
|
|
|
|
result = minimize(loss, init, method="SLSQP",\
|
|
|
|
options=opts, bounds=bnds, tol = None, jac = grad, constraints=cons)
|
|
|
|
sol = result['x']
|
|
|
|
return np.round(sol, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|